Search results for "Zeros of characters"
showing 2 items of 2 documents
On the orders of zeros of irreducible characters
2009
Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ (g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. © 2008 Elsevier Inc. All rights reserved.
Non-vanishing elements of finite groups
2010
AbstractLet G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every χ in Irr(G), we have χ(x)≠0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G.